Creación de mi primera red.
Elaborado por:
Wilson Oquendo
Juan Carmona
Jhon Edison Delgado
Esteban Tuberquia
Aroldo Montes.
Dirigido por:
Lina María Mesa Villada.
Edison Uriel. Castillón
Yaneth Franco García
.Programa: Técnica en implementación de redes cableadas.
Institución Universitaria de Envigado.
Envigado (ANT)
2010
CONTENIDO
1. INTRODUCCION
2. OBJETIVO GENERAL.
3. OBJETIVOS ESPECÍFICOS.
4. JUSTIFICACION
5. ANTECEDENTES.
6. SITUACIÓN ACTUAL.
7. MARCO TEÓRICO.
8. PRESUPUESTO.
9. CRONOGRAMA DE ACTIVIDADES.
10. CRONOGRAMA DE EJECUCIÓN DEL PROYECTO
ANTES Y DESPUES DEL PROYECTO
CONCLUSION
ANEXOS
1. INTRODUCCION
Este proyecto se hará en una casa de dos plantas, con tres computadores; consiste en montar una red entre dos o más computadores configurados mediante una dirección IP ya sea clase A-B o C que les permite intercambiar información, estos van conectados mediante el cableado UTP que va a través de una canaleta, el cableado horizontal y vertical, el cual es el que hace la conexión entre los pisos. También se utilizara una topología en árbol.
Estos computadores serán conectados a una impresora con el fin de que si se necesita sacar algún documento se les pueda dar la orden desde cualquiera de los equipos sin necesidad de movilizarse.
Lo que se pretende obtener de este proyecto son los resultados de lo que hemos aprendido y ponerlo en practica
2. Objetivo general.
Crear e implementar una red LAN con tres computadores y una impresora en una edificación de dos pisos.
3. Objetivos específicos.
Montar una red LAN en la casa del compañero Juan Esteba que consiste en el montaje, instalación, configuración, estructuración de tres computadores y una impresora que se hará paso a paso como lo hemos aprendido en las prácticas y teorías aprendidas en la universidad.
4. JUSTIFICACION
La red se crea porque surge la necesidad de tener un fácil acceso al servicio de comunicarse e intercambiar información entre tres computadores y poder imprimir documentos, datos, etc. También los familiares de Juan Esteban Carmona nos dieron la autorización para poder realizar este proyecto y nos manifestaron que tenemos todo su apoyo para seguir adelante con esta técnica profesional en telecomunicaciones
5. ANTECEDENTES.
En primer lugar visitamos la sala de informática y la biblioteca de la Institución Educativa Darío de Bedout, hablamos con la Rectora Doris Omaira Sánchez para que nos diera autorización para montar la red, pero de inmediato nos respondió que no se podía, nos dijo que teníamos que enviar una carta a secretaria de educación porque ellos eran los encargados de la manipulación y administración de los computadores.
En segundo lugar fuimos a un café internet san Mateo donde también nos negaron el montaje de la red porque aparentábamos no tener experiencia en montajes de redes LAN, Y por consiguiente decidimos montar la red en la casa de Juan Esteban Carmona Arrulas.
6. SITUACIÓN ACTUAL.
Este montaje se realizara en la casa de Juan esteban Carmona, que se ubica en el municipio de envigado, en el barrio Alto de Misael parte media.
Dirección: trans33sur # 29-15
Teléfono: 333 42 53
Propietario: Juan Esteban Carmona
Situación a futuro.
También se crea porque pensamos que puede ser un negocio permanente para ensayar como las personas tienen la capacidad de intercambiar datos y documentos interactuando entre ellos.
7. MARCO TEÓRICO.
Las primeras redes fueron de tiempo compartido las mismas que utilizaban mainframes y terminales conectadas.
Las LANS (Redes de Área Local) surgieron a partir de la revolución de la PC. Las LANS permitieron que usuarios ubicados en un área geográfica relativamente pequeña pudieran intercambiar mensajes y archivos, y tener acceso a recursos compartidos de toda la Red, tales como Servidores de Archivos o de aplicaciones.
Con la aparición de NetWare surgió una nueva solución, la cual ofrecía: soporte imparcial para los más de cuarenta tipos existentes de tarjetas, cables y sistemas operativos mucho más sofisticados que los que ofrecían la mayoría de los competidores. NetWare dominaba el campo de las LANS de los ordenadores personales desde antes de su introducción en 1983 hasta mediados de los años 1990, cuando Microsoft introdujo Windows NT Avance Server y Windows foro Workgroups.
De todos los competidores de NetWare, sólo Banyan VINES tenía poder técnico comparable, pero Banyan ganó una base segura. Microsoft y 3Com trabajaron juntos para crear un sistema operativo de red simple el cual estaba formado por la base de 3Com's 3+Share, el Gestor de redes LAN
De Microsoft y el Servidor del IBM. Ninguno de estos proyectos fue muy satisfactorio.
Además con el aprendizaje obtenido en las clases, nos asesoramos con técnicos en telecomunicaciones para que nos dieran pautas o concejos para que la red nos quedara más completa y organizada
Red de área local
Una red de área local, red local o LAN (del inglés local área network) es la interconexión de varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, o con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc.
El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información.
Evolución
Las primeras redes fueron de tiempo compartido las mismas que utilizaban mainframes y terminales conectadas.
Dichos entornos se implementaban con la SNA (Arquitectura de Sistemas de Redes) de IBM (internacional bussines machines) y la arquitectura de red Digital.
Las LAN
(Redes de Área Local) surgieron a partir de la revolución de la PC. Las LAN permitieron que usuarios ubicados en un área geográfica relativamente pequeña pudieran intercambiar mensajes y archivos, y tener acceso a recursos compartidos de toda la Red, tales como Servidores de Archivos o de aplicaciones.
Con la aparición de NetWare surgió una nueva solución, la cual ofrecía: soporte imparcial para los más de cuarenta tipos existentes de tarjetas, cables y sistemas operativos mucho más sofisticados que los que ofrecían la mayoría de los competidores. NetWare dominaba el campo de las LAN de los ordenadores personales desde antes de su introducción en 1983 hasta mediados de los años 1990, cuando Microsoft introdujo Windows NT Advance Server y Windows for Workgroups.
De todos los competidores de Netware, sólo Banyan VINES tenía poder técnico comparable, pero Banyan ganó una base segura. Microsoft y 3Com trabajaron juntos para crear un sistema operativo de red simple el cual estaba formado por la base de 3Com's 3+Share, el Gestor de redes LAN de Microsoft y el Servidor del IBM. Ninguno de estos proyectos fue muy satisfactorio.
Ventajas
En una empresa suelen existir muchos ordenadores, los cuales necesitan de su propia impresora para imprimir informes (redundancia de hardware), los datos almacenados en uno de los equipos es muy probable que sean necesarios en otro de los equipos de la empresa, por lo que será necesario copiarlos en este, pudiéndose producir desfases entre los datos de dos usuarios, la ocupación de los recursos de almacenamiento en disco se multiplican (redundancia de datos), los ordenadores que trabajen con los mismos datos deberán de tener los mismos programas para manejar dichos datos (redundancia de software), etc.
La solución a estos problemas se llama red de área local, esta permite compartir bases de datos (se elimina la redundancia de datos), programas (se elimina la redundancia de software) y periféricos como puede ser un módem, una tarjeta RDSI, una impresora, etc. (se elimina la redundancia de hardware); poniendo a nuestra disposición otros medios de comunicación como pueden ser el correo electrónico y el Chat. Nos permite realizar un proceso distribuido, es decir, las tareas se pueden repartir en distintos nodos y nos permite la integración de los procesos y datos de cada uno de los usuarios en un sistema de trabajo corporativo. Tener la posibilidad de centralizar información o procedimientos facilita la administración y la gestión de los equipos.
Además una red de área local conlleva un importante ahorro, tanto de tiempo, ya que se logra gestión de la información y del trabajo, como de dinero, ya que no es preciso comprar muchos periféricos, se consume menos papel, y en una conexión a Internet se puede utilizar una única conexión telefónica o de banda ancha compartida por varios ordenadores conectados en red.
Características importantes
• Tecnología broadcast (difusión) con el medio de transmisión compartido.
• Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
• Extensión máxima no superior a 3 km (una FDDI puede llegar a 200 km)
• Uso de un medio de comunicación privado
• La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica)
• La facilidad con que se pueden efectuar cambios en el hardware y el software
• Gran variedad y número de dispositivos conectados
• Posibilidad de conexión con otras redes
• Limitante de 100 m, puede llegar a más si se usan repetidores.
Topología de la red
La topología de red define la estructura de una red. Una parte de la definición topológica es la topología física, que es la disposición real de los cables o medios. La otra parte es la topología lógica, que define la forma en que los hosts acceden a los medios para enviar datos. Las topologías más comúnmente usadas son las siguientes:
Topologías físicas
• Una topología de bus circular usa un solo cable backbone que debe terminarse en ambos extremos. Todos los hosts se conectan directamente a este backbone.
• La topología de anillo conecta un host con el siguiente y al último host con el primero. Esto crea un anillo físico de cable.
• La topología en estrella conecta todos los cables con un punto central de concentración.
• Una topología en estrella extendida conecta estrellas individuales entre sí mediante la conexión de BUS o switches. Esta topología puede extender el alcance y la cobertura de la red.
• Una topología jerárquica es similar a una estrella extendida. Pero en lugar de conectar los HUBs o switches entre sí, el sistema se conecta con un computador que controla el tráfico de la topología.
• La topología de malla se implementa para proporcionar la mayor protección posible para evitar una interrupción del servicio. El uso de una topología de malla en los sistemas de control en red de una planta nuclear sería un ejemplo excelente. En esta topología, cada host tiene sus propias conexiones con los demás hosts. Aunque Internet cuenta con múltiples rutas hacia cualquier ubicación, no adopta la topología de malla completa.
• La topología de árbol tiene varias terminales conectadas de forma que la red se ramifica desde un servidor base.
Topologías lógicas
La topología lógica de una red es la forma en que los hosts se comunican a través del medio. Los dos tipos más comunes de topologías lógicas son broadcast y transmisión de tokens.
• La topología broadcast simplemente significa que cada host envía sus datos hacia todos los demás hosts del medio de red. No existe una orden que las estaciones deban seguir para utilizar la red. Es por orden de llegada, es como funciona Ethernet.
• La topología transmisión de tokens controla el acceso a la red mediante la transmisión de un token electrónico a cada host de forma secuencial. Cuando un host recibe el token, ese host puede enviar datos a través de la red. Si el host no tiene ningún dato para enviar, transmite el token al siguiente host y el proceso se vuelve a repetir. Dos ejemplos de redes que utilizan la transmisión de tokens son Token Ring y la Interfaz de datos distribuida por fibra (FDDI). Arcnet es una variación de Token Ring y FDDI. Arcnet es la transmisión de tokens en una topología de bus.
Tipos
La oferta de redes de área local es muy amplia, existiendo soluciones casi para cualquier circunstancia. Podemos seleccionar el tipo de cable, la topología e incluso el tipo de transmisión que más se adapte a nuestras necesidades. Sin embargo, de toda esta oferta las soluciones más extendidas son tres: Ethernet, Token Ring y Arcnet.
Comparativa de los tipos de redes
Para elegir el tipo de red que más se adapte a nuestras pretensiones, tenemos que tener en cuenta distintos factores, como son el número de estaciones, distancia máxima entre ellas, dificultad del cableado, necesidades de velocidad de respuesta o de enviar otras informaciones aparte de los datos de la red y, cómo no, el costo.
Como referencia para los parámetros anteriores, podemos realizar una comparación de los tres tipos de redes comentados anteriormente. Para ello, supongamos que el tipo Ethernet y Arcnet se instalan con cable coaxial y Token Ring con par trenzado apantallado. En cuanto a las facilidades de instalación, Arcnet resulta ser la más fácil de instalar debido a su topología. Ethernet y Token Ring necesitan de mayor reflexión antes de proceder con su implementación.
En cuanto a la velocidad, Ethernet es la más rápida, 10/100/1000 Mb/s, Arcnet funciona a 2,5 Mb/s y Token Ring a 4 Mb/s. Actualmente existe una versión de Token Ring a 16 Mb/s, pero necesita un tipo de cableado más caro.
En cuanto al precio, Arcnet es la que ofrece un menor coste; por un lado porque las tarjetas que se instalan en los PC para este tipo de redes son más baratas, y por otro, porque el cableado es más accesible. Token Ring resulta ser la que tiene un precio más elevado, porque, aunque las placas de los PC son más baratas que las de la red Ethernet, sin embargo su cableado resulta ser caro, entre otras cosas porque se precisa de una MAU por cada grupo de ocho usuarios mas.
Componentes
• Servidor: el servidor es aquel o aquellos ordenadores que van a compartir sus recursos hardware y software con los demás equipos de la red. Sus características son potencia de cálculo, importancia de la información que almacena y conexión con recursos que se desean compartir.
• Estación de trabajo: los ordenadores que toman el papel de estaciones de trabajo aprovechan o tienen a su disposición los recursos que ofrece la red así como los servicios que proporcionan los Servidores a los cuales pueden acceder.
• Gateway o pasarelas: es un hardware y software que permite las comunicaciones entre la red local y grandes ordenadores (mainframes). El Gateway adapta los protocolos de comunicación del mainframe (X25, SNA, etc.) a los de la red, y viceversa.
• Bridges o puentes: es un hardware y software que permite que se conecten dos redes locales entre sí. Un puente interno es el que se instala en un servidor de la red, y un puente externo es el que se hace sobre una estación de trabajo de la misma red. Los puentes también pueden ser locales o remotos. Los puentes locales son los que conectan a redes de un mismo edificio, usando tanto conexiones internas como externas. Los puentes remotos conectan redes distintas entre sí, llevando a cabo la conexión a través de redes públicas, como la red telefónica, RDSI o red de conmutación de paquetes.
• Tarjeta de red: también se denominan NIC (Network Interface Card). Básicamente realiza la función de intermediario entre el ordenador y la red de comunicación. En ella se encuentran grabados los protocolos de comunicación de la red. La comunicación con el ordenador se realiza normalmente a través de las ranuras de expansión que éste dispone, ya sea ISA, PCI o PCMCIA. Aunque algunos equipos disponen de este adaptador integrado directamente en la placa base.
• El medio: constituido por el cableado y los conectores que enlazan los componentes de la red. Los medios físicos más utilizados son el cable de par trenzado, par de cable, cable coaxial y la fibra óptica (cada vez en más uso esta última).
• Concentradores de cableado: una LAN en bus usa solamente tarjetas de red en las estaciones y cableado coaxial para interconectarlas, además de los conectores, sin embargo este método complica el mantenimiento de la red ya que si falla alguna conexión toda la red deja de funcionar. Para impedir estos problemas las redes de área local usan concentradores de cableado para realizar las conexiones de las estaciones, en vez de distribuir las conexiones el concentrador las centraliza en un único dispositivo manteniendo indicadores luminosos de su estado e impidiendo que una de ellas pueda hacer fallar toda la red.
Existen dos tipos de concentradores de cableado:
1. Concentradores pasivos: actúan como un simple concentrador cuya función principal consiste en interconectar toda la red.
2. Concentradores activos: además de su función básica de concentrador también amplifican y regeneran las señales recibidas antes de ser enviadas.
Los concentradores de cableado tienen dos tipos de conexiones: para las estaciones y para unirse a otros concentradores y así aumentar el tamaño de la red. Los concentradores de cableado se clasifican dependiendo de la manera en que internamente realizan las conexiones y distribuyen los mensajes. A esta característica se le llama topología lógica.
Existen dos tipos principales:
1. Concentradores con topología lógica en bus (HUB): estos dispositivos hacen que la red se comporte como un bus enviando las señales que les llegan por todas las salidas conectadas.
2. Concentradores con topología lógica en anillo (MAU): se comportan como si la red fuera un anillo enviando la señal que les llega por un puerto al siguiente.
Descripción de la figura
La red está conectada a Internet. Ésta se encuentra protegida de ataques externos mediante un firewall (no completamente protegido). Luego se pasa a una zona desmilitarizada. En esta zona se encuentran los servidores que tienen contacto con el exterior y además protege a la red interna. Los servidores se encuentran comunicados con las estaciones de trabajo, a través, de un hubo o switch. Los clientes de esta red son estaciones en las que corren sistemas operativos como MacOS X, GNU/Linux y Windows, además tenemos una impresora de red y podemos disponer de otros periféricos como escáneres, faxes, etc. (algunos de estos necesitando un software adicional para realizar el trabajo). Se puede ver en esta red un dispositivo inalámbrico, Bluetooth y cualquier otro que muestre las características necesarias para el funcionamiento de una red local.
Topología de red
La topología de red se define como la cadena de comunicación usada por los nodos que conforman una red para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento.
En algunos casos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos una topología en anillo, o de que se trata de un anillo con topología en estrella.
La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma.
Tipos de arquitecturas
Redes de araña
• La topología en estrella es la posibilidad de fallo de red conectando todos los nodos a un nodo central. Cuando se aplica a una red basada en la topología estrella este concentrador central reenvía todas las transmisiones recibidas de cualquier nodo periférico a todos los nodos periféricos de la red, algunas veces incluso al nodo que lo envió. Todos los nodos periféricos se pueden comunicar con los demás transmitiendo o recibiendo del nodo central solamente. Un fallo en la línea de conexión de cualquier nodo con el nodo central provocaría el aislamiento de ese nodo respecto a los demás, pero el resto de sistemas permanecería intacto. El tipo de concentrador hub se utiliza en esta topología, aunque ya es muy obsoleto; se suele usar comúnmente un switch.
La desventaja radica en la carga que recae sobre el nodo central. La cantidad de tráfico que deberá soportar es grande y aumentará conforme vayamos agregando más nodos periféricos, lo que la hace poco recomendable para redes de gran tamaño. Además, un fallo en el nodo central puede dejar inoperante a toda la red. Esto último conlleva también una mayor vulnerabilidad de la red, en su conjunto, ante ataques.
Si el nodo central es pasivo, el nodo origen debe ser capaz de tolerar un eco de su transmisión. Una red en estrella activa tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco.
• Una topología en árbol (también conocida como topología jerárquica) puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir.
Como en las redes en estrella convencionales, los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.
Para aliviar la cantidad de tráfico de red que se necesita para retransmitir todo a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes respuesta.
Arquitecturas de red.
Cableado estructurado
Es el sistema colectivo de cables, canalizaciones, conectores, etiquetas, espacios y demás dispositivos que deben ser instalados para establecer una infraestructura de telecomunicaciones genérica en un edificio o campus. Las características e instalación de estos elementos se deben hacer en cumplimiento de estándares para que califiquen como cableado estructurado. El apego de las instalaciones de cableado estructurado a estándares trae consigo los beneficios de independencia de proveedor y protocolo (infraestructura genérica), flexibilidad de instalación, capacidad de crecimiento y facilidad de administración.
El cableado estructurado consiste en el tendido de cables en el interior de un edificio con el propósito de implantar una red de área local. Suele tratarse de cable de par trenzado de cobre, para redes de tipo IEEE 802.3. No obstante, también puede tratarse de fibra óptica o cable coaxial.
Descripción
El tendido de cierta complejidad cuando se trata de cubrir áreas extensas tales como un edificio de varias plantas. En este sentido hay que tener en cuenta las limitaciones de diseño que impone la tecnología de red de área local que se desea implantar:
• La segmentación del tráfico de red.
• La longitud máxima de cada segmento de red.
• La presencia de interferencias electromagnéticas.
• La necesidad de redes locales virtuales.
• Etc.
Salvando estas limitaciones, la idea del cableado estructurado es simple:
• Tender cables en cada planta del edificio.
• Interconectar los cables de cada planta.
Cableado horizontal o "de planta"
Todos los cables se concentran en el denominado armario de distribución de planta o armario de telecomunicaciones. Se trata de un bastidor donde se realizan las conexiones eléctricas (o "empalmes") de unos cables con otros. En algunos casos, según el diseño que requiera la red, puede tratarse de un elemento activo o pasivo de comunicaciones, es decir, un hub o un switch. En cualquier caso, este armario concentra todos los cables procedentes de una misma planta. Este subsistema comprende el conjunto de medios de transmisión (cables, fibras, coaxiales, etc.) que unen los puntos de distribución de planta con el conector o conectores del puesto de trabajo. Ésta es una de las partes más importantes a la hora del diseño debido a la distribución de los puntos de conexión en la planta, que no se parece a una red convencional en lo más mínimo.
Cableado vertical, troncal o backbone
Después hay que interconectar todos los armarios de distribución de planta mediante otro conjunto de cables que deben atravesar verticalmente el edificio de planta a planta. Esto se hace a través de las canalizaciones existentes en el edificio. Si esto no es posible, es necesario habilitar nuevas canalizaciones, aprovechar aberturas existentes (huecos de ascensor o escaleras), o bien, utilizar la fachada del edificio (poco recomendable). En los casos donde el armario de distribución ya tiene electrónica de red, el cableado vertical cumple la función de red troncal. Obsérvese que éste agrega el ancho de banda de todas las plantas. Por tanto, suele utilizarse otra tecnología con mayor capacidad. Por ejemplo, FDDI o Gigabit Ethernet.
Cuarto principal de equipos y de entrada de servicios
El cableado vertical acaba en una sala donde, de hecho, se concentran todos los cables del edificio. Aquí se sitúa la electrónica de red y otras infraestructuras de telecomunicaciones, tales como pasarelas, puertas de enlace, cortafuegos, central telefónica, recepción de TV por cable o satélite, etc., así como el propio Centro de proceso de datos (es aplicable).
Subsistemas de Cableado Estructurado
El cableado estructurado está compuesto de varios subsistemas:
• Sistema de cableado vertical.
• Sistema de cableado horizontal.
• Sala de área de trabajo.
• Cuarto o espacio de telecomunicaciones.
• Cuarto o espacio de equipo.
• Cuarto o espacio de entrada de servicios.
• Administración, etiquetado y pruebas.
• Sistema de puesta a tierra para telecomunicaciones.
El sistema de canalizaciones puede contener cableado vertical u horizontal.
Cableado vertical, troncal o backbone
Después hay que interconectar todos los armarios de distribución de planta mediante otro conjunto de cables que deben atravesar verticalmente el edificio de planta a planta.
Esto se hace a través de las canalizaciones existentes en el edificio.
Si esto no es posible, es necesario habilitar nuevas canalizaciones, aprovechar aberturas existentes (huecos de ascensor o escaleras), o bien, utilizar la fachada
Dirección IP
Una dirección IP es una etiqueta numérica que identifica, de manera lógica y jerárquica, a una interfaz (elemento de comunicación/conexión) de un dispositivo (habitualmente una computadora) dentro de una red que utilice el protocolo IP (Internet Protocol), que corresponde al nivel de red del protocolo TCP/IP. Dicho número no se ha de confundir con la dirección MAC que es un número hexadecimal fijo que es asignado a la tarjeta o dispositivo de red por el fabricante, mientras que la dirección IP se puede cambiar. Esta dirección puede cambiar 2 ó 3 veces al día; y a esta forma de asignación de dirección IP se denomina una dirección IP dinámica (normalmente se abrevia como IP dinámica).
Los sitios de Internet que por su naturaleza necesitan estar permanentemente conectados, generalmente tienen una dirección IP fija (comúnmente, IP fija o IP estática), es decir, no cambia con el tiempo. Los servidores de correo, DNS, FTP públicos, y servidores de páginas web necesariamente deben contar con una dirección IP fija o estática, ya que de esta forma se permite su localización en la red.
A través de Internet, los ordenadores se conectan entre sí mediante sus respectivas direcciones IP. Sin embargo, a los seres humanos nos es más cómodo utilizar otra notación más fácil de recordar y utilizar, como los nombres de dominio; la traducción entre unos y otros se resuelve mediante los servidores de nombres de dominio DNS.
Existe un protocolo para asignar direcciones IP dinámicas llamado DHCP (Dynamic Host Configuration Protocol).
Direcciones IPv4
Artículo principal: IPv4
Las direcciones IP se pueden expresar como números de notación decimal: se dividen los 32 bits de la dirección en cuatro octetos. El valor decimal de cada octeto puede ser entre 0 y 255 [el número binario de 8 bits más alto es 11111111 y esos bits, de derecha a izquierda, tienen valores decimales de 1, 2, 4, 8, 16, 32, 64 y 128, lo que suma 256 en total, 255 más la 0 (0000 0000)].
En la expresión de direcciones IPv4 en decimal se separa cada octeto por un carácter único ".". Cada uno de estos octetos puede estar comprendido entre 0 y 255, salvo algunas excepciones. Los ceros iníciales, si los hubiera, se pueden obviar (010.128.001.255 sería 10.128.1.255).
• Ejemplo de representación de dirección IPv4:
Hay tres clases de direcciones IP que una organización puede recibir de parte de la Internet Corporation for Assigned Names and Numbers (ICANN): clase A, clase B y clase C. En la actualidad, ICANN reserva las direcciones de clase A para los gobiernos de todo el mundo (aunque en el pasado se le hayan otorgado a empresas de gran envergadura como, por ejemplo, Hewlett Packard) y las direcciones de clase B para las medianas empresas. Se otorgan direcciones de clase C para todos los demás solicitantes. Cada clase de red permite una cantidad fija de equipos (hosts).
• En una red de clase A, se asigna el primer octeto para identificar la red, reservando los tres últimos octetos (24 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 224 - 2 (se excluyen la dirección reservada para broadcast (últimos octetos en 255) y de red (últimos octetos en 0)), es decir, 16 777 214 hosts.
• En una red de clase B, se asignan los dos primeros octetos para identificar la red, reservando los dos octetos finales (16 bits) para que sean asignados a los hosts, de modo que la cantidad máxima de hosts es 216 - 2, o 65 534 hosts.
• En una red de clase C, se asignan los tres primeros octetos para identificar la red, reservando el octeto final (8 bits) para que sea asignado a los hosts, de modo que la cantidad máxima de hosts es 28 - 2, ó 254 hosts.
Clase Rango N° de Redes N° de Host Máscara de Red
Broadcast ID
A 1.0.0.0 - 127.255.255.255 126 16.777.214 255.0.0.0 x.255.255.255
B 128.0.0.0 - 191.255.255.255 16.382 65.534 255.255.0.0 x.x.255.255
C 192.0.0.0 - 223.255.255.255 2.097.150 254 255.255.255.0 x.x.x.255
D 224.0.0.0 - 239.255.255.255
E 240.0.0.0 - 255.255.255.255
• La dirección 0.0.0.0 es utilizada por las máquinas cuando están arrancando o no se les ha asignado dirección.
• La dirección que tiene su parte de host a cero sirve para definir la red en la que se ubica. Se denomina dirección de red.
• La dirección que tiene su parte de host a unos sirve para comunicar con todos los hosts de la red en la que se ubica. Se denomina dirección de broadcast.
• Las direcciones 127.x.x.x se reservan para pruebas de retroalimentación. Se denomina dirección de bucle local o loopback.
Direcciones privadas
Hay ciertas direcciones en cada clase de dirección IP que no están asignadas y que se denominan direcciones privadas. Las direcciones privadas pueden ser utilizadas por los hosts que usan traducción de dirección de red (NAT) para conectarse a una red pública o por los hosts que no se conectan a Internet. En una misma red no pueden existir dos direcciones iguales, pero sí se pueden repetir en dos redes privadas que no tengan conexión entre sí o que se conecten a través del protocolo NAT. Las direcciones privadas son:
• Clase A: 10.0.0.0 a 10.255.255.255 (8 bits red, 24 bits hosts). 1 red clase A, uso VIP, ej.: la red militar estadounidense.[cita requerida]
• Clase B: 172.16.0.0 a 172.31.255.255 (12 bits red, 20 bits hosts). 16 redes clase B contiguas, uso en universidades y grandes compañías.
• Clase C: 192.168.0.0 a 192.168.255.255 (16 bits red, 16 bits hosts). 256 redes clase C contiguas, uso de compañías medias y pequeñas además de pequeños proveedores de internet (ISP).
A partir de 1993, ante la previsible futura escasez de direcciones IPv4 debido al crecimiento exponencial de hosts en Internet, se empezó a introducir el sistema CIDR, que pretende en líneas generales establecer una distribución de direcciones más fina y granulada, calculando las direcciones necesarias y "desperdiciando" las mínimas posibles, para rodear el problema que la distribución por clases había estado gestando. Este sistema es, de hecho, el empleado actualmente para la delegación de direcciones.
Muchas aplicaciones requieren conectividad dentro de una sola red, y no necesitan conectividad externa. En las redes de gran tamaño a menudo se usa TCP/IP. Por ejemplo, los bancos pueden utilizar TCP/IP para conectar los cajeros automáticos que no se conectan a la red pública, de manera que las direcciones privadas son ideales para ellas. Las direcciones privadas también se pueden utilizar en una red en la que no hay suficientes direcciones públicas disponibles.
Las direcciones privadas se pueden utilizar junto con un servidor de traducción de direcciones de red (NAT) para suministrar conectividad a todos los hosts de una red que tiene relativamente pocas direcciones públicas disponibles. Según lo acordado, cualquier tráfico que posea una dirección destino dentro de uno de los intervalos de direcciones privadas no se enrutará a través de Internet.
Máscara de subred
La máscara permite distinguir los bits que identifican la red y los que identifican el host de una dirección IP. Dada la dirección de clase A 10.2.1.2 sabemos que pertenece a la red 10.0.0.0 y el host al que se refiere es el 2.1.2 dentro de la misma. La máscara se forma poniendo a 1 los bits que identifican la red y a 0 los bits que identifican el host. De esta forma una dirección de clase A tendrá como máscara 255.0.0.0, una de clase B 255.255.0.0 y una de clase C 255.255.255.0. Los dispositivos de red realizan un AND entre la dirección IP y la máscara para obtener la dirección de red a la que pertenece el host identificado por la dirección IP dada. Por ejemplo un router necesita saber cuál es la red a la que pertenece la dirección IP del datagrama destino para poder consultar la tabla de encaminamiento y poder enviar el datagrama por la interfaz de salida. Para esto se necesita tener cables directos.
Creación de subredes
El espacio de direcciones de una red puede ser subdividido a su vez creando subredes autónomas separadas. Un ejemplo de uso es cuando necesitamos agrupar todos los empleados pertenecientes a un departamento de una empresa. En este caso crearíamos una subred que englobara las direcciones IP de éstos. Para conseguirlo hay que reservar bits del campo host para identificar la subred estableciendo a uno los bits de red-subred en la máscara. Por ejemplo la dirección 172.16.1.1 con máscara 255.255.255.0 nos indica que los dos primeros octetos identifican la red (por ser una dirección de clase B), el tercer octeto identifica la subred (a 1 los bits en la máscara) y el cuarto identifica el host (a 0 los bits correspondientes dentro de la máscara). Hay dos direcciones de cada subred que quedan reservadas: aquella que identifica la subred (campo host a 0) y la dirección para realizar broadcast en la subred (todos los bits del campo host en 1).
IP dinámica
Una dirección IP dinámica es una IP asignada mediante un servidor DHCP (Dynamic Host Configuration Protocol) al usuario. La IP que se obtiene tiene una duración máxima determinada. El servidor DHCP provee parámetros de configuración específicos para cada cliente que desee participar en la red IP. Entre estos parámetros se encuentra la dirección IP del cliente.
DHCP apareció como protocolo estándar en octubre de 1993. El estándar RFC 2131 especifica la última definición de DHCP (marzo de 1997). DHCP sustituye al protocolo BOOTP, que es más antiguo. Debido a la compatibilidad retroactiva de DHCP, muy pocas redes continúan usando BOOTP puro.
Las IP dinámicas son las que actualmente ofrecen la mayoría de operadores. Éstas suelen cambiar cada vez que el usuario reconecta por cualquier causa.
Ventajas
• Reduce los costos de operación a los proveedores de servicios de Internet (ISP).
• Reduce la cantidad de IP asignadas (de forma fija) inactivas.
Desventajas
• Obliga a depender de servicios que redirigen un host a una IP.
Asignación de direcciones IP
Dependiendo de la implementación concreta, el servidor DHCP tiene tres métodos para asignar las direcciones IP:
• manualmente, cuando el servidor tiene a su disposición una tabla que empareja direcciones MAC con direcciones IP, creada manualmente por el administrador de la red. Sólo clientes con una dirección MAC válida recibirán una dirección IP del servidor.
• automáticamente, donde el servidor DHCP asigna permanentemente una dirección IP libre, tomada de un rango prefijado por el administrador, a cualquier cliente que solicite una.
• dinámicamente, el único método que permite la reutilización de direcciones IP. El administrador de la red asigna un rango de direcciones IP para el DHCP y cada ordenador cliente de la LAN tiene su software de comunicación TCP/IP configurado para solicitar una dirección IP del servidor DHCP cuando su tarjeta de interfaz de red se inicie. El proceso es transparente para el usuario y tiene un periodo de validez limitado.
IP fija
Una dirección IP fija es una IP asignada por el usuario de manera manual. Mucha gente confunde IP Fija con IP Pública e IP Dinámica con IP Privada.
Una IP puede ser Privada ya sea dinámica o fija como puede ser IP Pública Dinámica o Fija.
Una IP Pública se utiliza generalmente para montar servidores en internet y necesariamente se desea que la IP no cambie por eso siempre la IP Pública se la configura de manera Fija y no Dinámica, aunque si se podría.
En el caso de la IP Privada generalmente es dinámica asignada por un servidor DHCP, pero en algunos casos se configura IP Privada Fija para poder controlar el acceso a internet o a la red local, otorgando ciertos privilegios dependiendo del número de IP que tenemos, si esta cambiara (fuera dinámica) sería más complicado controlar estos privilegios (pero no imposible).
Las IP Públicas fijas actualmente en el mercado de acceso a Internet tienen un costo adicional mensual. Estas IP son asignadas por el usuario después de haber recibido la información del proveedor o bien asignadas por el proveedor en el momento de la primera conexión.
Esto permite al usuario montar servidores web, correo, FTP, etc. y dirigir un nombre de dominio a esta IP sin tener que mantener actualizado el servidor DNS cada vez que cambie la IP como ocurre con las IP Públicas dinámicas.
Las direcciones IP son un número único e irrepetible con el cual se identifica una computadora conectada a una red que corre el protocolo IP.
Ventajas
• Es más fácil asignar el dominio para un siete.
Desventajas
• Son más vulnerables a ataques, puesto que el usuario está siempre conectado en la misma IP y es posible que se preparen ataques con más tiempo (mediante la detección de vulnerabilidades de los sistemas operativos o aplicaciones.
8. PRESUPUESTO.
Contamos con la cantidad necesaria para comprar todos los materiales que requerimos para montar la red.
Se cuenta con un presupuesto de 100.000 los cuales salieron de cada uno de los integrantes y un gran aporte importante de los padres de familia.
PRESUPUESTO
MATERIALES CANTIDAD PRECIO UNITARIO PRECIO TOTAL
CABLE UTP 10 MTS 1.000 10.000
CONECTORES RJ45 6 400 2400
COMPUTADORES 3
IMPRESORA 1
CANALETA 10 MTS 2000 20000
SWICH 1 40000 40000
TOTAL 74000
IMPLEMENTOS DE TRABAJO
MATERIAL CANTIDAD
KITD DE PONCHADO 1
CORTAFRIO 1
METRO 1
NIVEL 1
9. CRONOGRAMA DE ACTIVIDADES
SEMANA ETAPA DEL PROYECTO
1 investigación
2 Recopilación de información
3 Diseño de la red
4 Compra de los materiales
5 Montaje de la red
6 Configuración de los equipos
7 Prueba de implementación
10.Cronograma de ejecución del proyecto
Día 1 Se hicieron averiguaciones de los precios.
Día 2 Compra de los materiales en eléctricos Itagüí y electro servicios.
Día 3 Se hizo el montaje de la canaleta, y el ponchado del cableado.
Día 4 Se tiro el cableado por la canaleta y se hizo una configuración a los computadores.
Día 5 Se hizo una prueba de funcionamiento.
ANTES
DESPUES
BIBLIOGRAFIA
www.iue.com.co
www.wikipedia.com
www.monografias.com
www.google.com `
COCLUSION
Se pudo aprender lo que es ponchar cable UTP, configuración IP, Etc.
Se lograron intercambiar datos entre dos computadores ubicados en dos niveles.
Aplicamos lo aprendido en el montaje de la red, en los campo de emprendimiento, física, etc.
ANEXOS.
No hay comentarios:
Publicar un comentario